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I.​ Summary 

Since its creation in 2020, the Rulebook for Programs and Projects Based on Normalized 
Metered Energy Consumption (NMEC Rulebook)1 has provided an essential framework to 
enable Population NMEC programs. With the NMEC Rulebook guidance in place, Population 
NMEC has evolved from a niche set of pilot programs to a primary deployment mechanism 
for flexible and accountable demand side initiatives.2  

While the NMEC Rulebook establishes many fundamental guardrails, it does not fully 
contemplate several important issues that arise in most programs. Here we cover three such 
related issues and how Recurve’s products address them:  

1.​ Disqualification of meters with counterfactuals that cannot be trusted to serve as a 
reasonable estimation of consumption in the absence of the program 

2.​ Assigned Savings calculated for the meters that are disqualified from a measurement 

3.​ Interpolation of absent savings values that arise from missing consumption or 
weather data 

Together, these steps ensure the quality of a population NMEC measurement, while also 
providing proper credit to all installed projects.  

The following schematic outlines the relationship between these topics and the sequence 
that procedures are applied in Recurve’s software.  

Recurve Software Computational Pipeline: 

 

2 California’s Market Access initiative and the measured pathway of the Inflation Reduction Act’s Hope 
for Homes Program are clear examples of increasing reliance on Population NMEC programs as energy 
resources on par with supply side options.  

1 Rulebook for Programs and Projects Based on Normalized Metered Energy Consumption (version 
2.0), California Public Utilities Commission, 2020.  

1 



 

After data ingestion and formatting, Recurve’s computational pipeline begins with the 
creation of baseline models using the open source Linux Foundation Energy OpenDSM 
package.3 The modeling outputs of the OpenDSM step are needed to determine which meters 
are qualified and which should be disqualified from the measurement due to their risk of 
creating instability or bias in the population level results. This disqualification process is 
described in Section II. Disqualified meters are then taken into an assigned savings pathway 
(Section III). Qualified meters enter an interpolation procedure, detailed in Section IV, which 
fills in the missing savings values that may arise due to absent meter or weather data.  

Once the interpolation and assigned savings steps are completed, a full set of time-series 
energy savings values is assembled for all projects. These data flow into the open source 
FLEXvalue engine to determine the Total Systems Benefits (TSB). The TSB are the basis for 
aggregator payments, which is determined in the last step of the process.  

II.​ Disqualification 

The schematic below shows the elements of a meter-level OpenDSM load impact 
calculation.4 Based on a meter’s pre-program consumption data and weather data, a 
“baseline period” model is created. After the program intervention, that model is projected 
forward as a counterfactual using the “reporting period” weather. The counterfactual 
represents the model’s prediction of what energy consumption would have been if the 
program intervention had not taken place. Often, this counterfactual is “corrected” based on 
an analogous set of calculations applied to a matched comparison group.5 The difference 
between the counterfactual and the reporting period observed usage is taken as the energy 
savings.  

 

For stable and valid population NMEC results, it is critical to ensure that the individual meters 
subject to this measurement can be properly modeled and the predictions those models 
generate constitute a reasonable comparison to the observed reporting period consumption. 

5 See the open source GRIDmeter methods (Comparison Groups For the COVID Era and Beyond) and 
code (https://github.com/recurve-methods/comparison_groups) 

4 Meter level results are aggregated to the population level in a Population NMEC measurement 

3 https://lfenergy.org/projects/opendsm/ 
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To this end, disqualification criteria should be established that remove meters when the 
associated counterfactuals should not be trusted as the basis of a savings calculation. 
Disqualification criteria often include data sufficiency requirements,6 model fit metrics, outlier 
thresholds, and screening for “Non-Routine Events,” such as the installation of a major new 
load that is not associated with the program, among others. In Recurve’s experience, when 
applying a complete set of disqualification criteria, attrition of 20% is common in a 
population NMEC measurement, though the specific number will depend on many factors. 
With this said, programs that successfully screen for baseline period disqualification triggers 
in an enrollment eligibility step can retain a much higher fraction of meters in the final 
measurement.  

Below are the disqualification criteria Recurve typically applies along with brief explanations 
and common default values. These default values can be modified depending on the context 
and needs of a program.  

Long Term Baseline (AKA Energy Efficiency Baseline) 

A.​ Measurement Period Disqualification Criteria 

The measurement period is defined as the start of the baseline period through the end of the 
reporting period. The following criteria are not tied specifically to the baseline period, the 
blackout period, or the reporting period.  

●​ Modified load: Meters can be disqualified based on the addition or subtraction of a 
major new load during the measurement period that is not associated with the 
program. For example, the counterfactual would no longer provide a valid comparison 
to observed consumption after a customer installs rooftop solar PV during the 
reporting period. While some forms of modified load can be detected using meter 
data alone, others benefit from knowledge captured by program implementers or 
administrators.  

○​ Dual participation: Meters should be disqualified if the customer has 
participated in multiple programs that impact long term counterfactuals or 
reporting period observed consumption during the measurement period. 

B.​ Baseline Period Disqualification Criteria 

The following criteria are applied to the baseline period (the 365 day period before the 
program intervention): 

6 Often, the predominant reason meters are disqualified is insufficient baseline period data. The 
OpenEEmeter (precursor to OpenDSM) working group deliberated the topic of data sufficiency and 
arrived at qualification criteria. When using the OpenEEmeter methods, the threshold for missing data 
is 10% of a year for the 2.0 daily model. In other words, 90% of days in a 365-day baseline period 
must contain non-zero values. For monthly or billing data, this often effectively translates to a 
maximum of one month or billing cycle with missing data allowed. For the CalTRACK 2.0 hourly model, 
the working group established that 90% of usage data must be present in each month of the year to 
form a valid model. These data sufficiency requirements are a topic to be revisited by the OpenDSM 
working group. 
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●​ Baseline data sufficiency: Meters must have enough baseline period data to build 
reliable models. Baseline data sufficiency criteria are often distinct for monthly, daily, 
and hourly interval data. Defaults based on the original CalTRACK 2.0 models and that 
are subject to change are: 

○​ Monthly: Meters must have 11 months with consumption data 

○​ Daily: Meters must have at least 90% of days (> 327 days) with consumption 
data 

○​ Hourly: Meters must have at least 90% of hours within each calendar month 
with consumption data. 

●​ Baseline model fit: Meters must have consumption patterns that allow for the 
generation of a model with a reasonable fit. OpenDSM computes a model’s Coefficient 
of Variation of Root Mean Squared Error (CVRMSE), its Percentile Normalized Root 
Mean Squared Error (PNRMSE), defined as the RMSE divided by the interquartile range 
of a meter’s interval consumption, among other metrics, and disqualifies meters 
exceeding certain thresholds in these values7. Recurve’s default threshold values 
match the OpenDSM criteria.  

○​ Hourly: OpenDSM hourly model CVRMSE between 0 and 1.4 OR PNRMSE < 2.2.  

○​ Daily/billing: OpenDSM daily/billing model CVRMSE between 0 and 1.0 OR 
PNRMSE < 1.6 

○​ Legacy models prior to OpenDSM 1.0 disqualify meters with a daily model 
CVRMSE > 1.0 for all time granularities. 

●​ Comparison group selection: Meters must have adequate comparison pool matches 
available. 

●​ Modeling breaking points: Certain computational issues can arise that result in 
broken models. For example, a meter may have a pattern of missing data that 
prevents a model from being formulated.  

C.​ Reporting Period Disqualification Criteria 

The following criteria are applied to the reporting period (the 365 day period after the 
blackout end date or beyond): 

●​ Reporting year 1 data sufficiency: These are analogous requirements to those 
established for the baseline period. However, this criterion must be assessed on an 
ongoing basis as the first reporting year progresses.  

●​ Savings outliers: Very high or very low savings relative to the counterfactual often 
indicates that a building’s consumption has changed in ways that are unassociated 
with a program. Default: Reporting year 1 savings (savings/counterfactual) should be 

7 See the OpenDSM documentation for more information: 
https://opendsm.github.io/opendsm/documentation/eemeter/hourly_model/ 
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within the bounds of -0.5 to 0.5.8 Outlier thresholds can and should be revisited based 
on statistical analysis of the program being measured or similar past programs. 

○​ In some cases, after review, it may be determined that a savings outlier is 
actually showing reasonable or consistent savings in respect to the 
intervention. In this case, the meter may remain qualified. 

●​ Consumption outlier: In a mature program it is risky if any single meter accounts for 
a very high fraction of the total consumption of all customers in the program. When 
portfolios reach 100 projects it is recommended to disqualify any meter that accounts 
for more than 10% of total portfolio counterfactual, though this setting can depend on 
the context of a specific program.  

III.​ Assigned Savings 

While it is important to disqualify meters from a savings calculation that could compromise 
the accuracy or trustworthiness of a population NMEC measurement, it is equally important 
that all completed projects are given due credit. Therefore, methods are needed to assign 
savings for disqualified meters. This section details three strategies Recurve has available for 
the assignment of savings to disqualified projects.  

The three strategies are as follows: 

1.​ Portfolio Average: Assign project savings based on the portfolio average 

2.​ Forecast Direct: Assign project savings based on the project’s forecast 

3.​ Forecast With Realization Rate: Assign project savings based on the project’s 
forecast multiplied by a portfolio-level realization rate determined from the qualified 
projects 

 

8 For electrification programs, a building’s gas usage may be removed all together and electric 
consumption will increase substantially. Therefore, corresponding outlier ranges of fractional savings 
for gas should be closer to -0.5 to 1 and -1 to 0.5 for electric. 
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With any method, each meter is assigned to a single sub-program portfolio (often referred to 
as a canonical portfolio). This canonical portfolio can be used to further break down assigned 
savings calculations. 

In the Portfolio Average method, the savings averages can be calculated at a full program 
level, or at an aggregator level. In addition, each meter is assigned to a single canonical 
portfolio. Canonical portfolio assignment is often performed with categorical variables such 
as program year, measure packages, or income status. This canonical portfolio can be used 
to further break down assigned savings calculations. The realization rates determined in the 
Forecast With Realization Rate method can also be broken down in these ways. This 
optionality ensures that one aggregator’s results need not influence the outcomes for 
another aggregator and allows for distinctions between different pathways established within 
a program. 

Each of the three strategies is most appropriate for particular sets of circumstances.  

1.​ The Portfolio Average approach is best for mature portfolios with a largely 
homogenous participant base. For example, a residential portfolio with 1,000 projects 
would be expected to yield calculation of stable average savings results. However, this 
is not the best option when the program serves a wide variety of customers such as a 
non-residential portfolio with customers that span a wide range of total consumption. 
Assigning savings to a large office building with 100 MWh annual consumption based 
on the average from a portfolio that mostly serves small businesses would not be 
advisable.    

2.​ The Forecast Direct strategy is best utilized for nascent portfolios that lack the volume 
of past projects needed to calculate reliable savings averages or realization rates.  

3.​ The Forecast With Realization Rate option is best suited for portfolios with enough 
completed projects to calculate reliable realization rates, but with a heterogeneous 
customer base. Note, this method is NOT advisable for portfolios where a given fuel 
type could have negative savings, 
such as electrification, because 
realization rates with negative 
forecasted savings are 
non-sensical. 

In each of these methods, savings are 
assigned on a sliding window from the 
intervention active date through the last 
known date of savings from qualified 
meters. As a result, savings will be 
assigned continuously over time, rather 
than assigning a full year of savings at 
once. This enables continuous reporting of 
assigned savings, and opens the door for 
ongoing payments from assigned savings. 
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The first and third options utilize the meter-based performance to the extent possible, which 
is often an objective of population NMEC programs as doing so preserves the accountability 
of the measured results. Collectively, the three approaches cover the large majority of 
expected cases.   

IV.​ Interpolation 

Even among meters that pass all disqualification criteria, consumption or temperature data 
points can be missing, resulting in empty savings values. Recurve has studied several 
datasets and we observe that among meters with sufficient data, raw meter data and/or 
weather data are missing 0.5 - 3% of values, resulting in the corresponding savings values 
being eliminated. 

While this may appear to be a small problem, for competitive programs that operate on the 
margins of cost effectiveness and aggregator profitability, the failure to capture all benefits 
can represent a significant impediment. Additionally, gas and electric data often have 
different degrees of completeness. Therefore, for electrification or fuel switching programs in 
particular, these imbalances can skew savings, avoided cost, and greenhouse gas impacts.   

Recurve has designed, tested, optimized, and implemented a highly accurate interpolation 
algorithm to restore missing savings data points from these issues. This document gives two 
anonymous examples, describes the interpolation approach, and gives the results of testing.  

A.​ Types of Missing Data 

Missing savings values can arise for at least three distinct reasons: 

1.​ Missing treatment meter observed data in the reporting period 

2.​ Missing temperature data, which prevents computation of a counterfactual 

3.​ Missing comparison group correction, which can arise from the elimination of outlier 
data points or missing comparison group meter observed data in the reporting period 

B.​ Examples 

Test Case 1: 

The table below gives a summary of the savings data points from a recent dataset that 
Recurve analyzed. 
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In this case, more than 2% of all savings values were null due primarily to missing values in 
the reporting period consumption data.  

Test Case 2: 

The table below gives another breakdown of null savings values from a dataset Recurve 
recently analyzed. In this case, 0.47% of electric and 0.43% of gas savings values were null.  

 

In this case, the null electric values were split fairly evenly between missing reporting period 
meter values and missing temperature values. Because the gas data were of a monthly 
interval, the missing temperature values were largely mitigated by taking average daily 
values per the OpenDSM method specifications. 

C.​ Technical Challenge and Solution 

Simple forms of interpolation are not appropriate for energy and savings data. For instance, 
filling in missing data with average annual values ignores seasonal patterns. Assuming a 
linear relationship between missing data points would fail to capture a customer’s predictable 
monthly or hourly consumption patterns. Further, because missing savings values can arise 
due to missing temperature or missing observed data, it is insufficient to only interpolate 
temperature in a pre-modeling step. 
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An ideal solution would be simple, inexpensive, and equally applicable across all cases, from 
hourly electric to monthly gas and from a single missing data point to potentially a block of 
many missing points.  

i.​ Core Concept: Partitioned Moving Average 

The central element of the solution Recurve has developed is a partitioned moving average. 
Taking an hourly electric measurement as an example, a moving average is partitioned along 
the following axes: 

●​ Meter 
●​ Weekday vs Weekend 
●​ If Hourly Savings: Hour of Day 

Partitioning into these categories ensures that if a particular meter is missing a 6 pm 
weekday datapoint then only non-null 6 pm weekday measurements from the same meter 
will be used to create the interpolated value.  

A simplified schematic of this interpolation concept is shown below. 

 

Details of how to formulate the moving average (window size etc.) are the subject of 
empirical testing and are described below. 

ii.​ Counterfactual, Observed, and Savings Interpolation 

When both fields are present, savings are calculated as the difference between a meter’s 
counterfactual value and its observed reading. Therefore, when one of these fields is missing, 
the resulting savings are also missing. Both observed and counterfactual values are expected 
to be temperature-dependent. Because the difference between observed and counterfactual 
ultimately matters, when one of them is missing it is advisable to interpolate both of them. 
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Interpolating only one would be prone to error on account of mismatching temperature 
dependencies among other unknown factors. Interpolating both values also ensures that no 
matter the root cause of a missing savings value, its repopulation is consistent and retains 
the relationship between counterfactual, observed, and savings. 

D.​ Testing and Analysis 

In order to test the accuracy and stability of the interpolation strategy, the following 
approach was formulated: 

1.​ A seeded sample of N random points that had non-null savings values is taken from 
qualified meters within the test dataset.  

2.​ For these N points, the corrected counterfactual, observed, and corrected savings9 
values were assigned as null.  

3.​ For these N points, the original corrected counterfactual, observed, and corrected 
savings values were retained for residual analysis. 

4.​ The interpolation algorithm (detailed below) is applied to generate interpolated 
corrected counterfactual, observed, and corrected savings values. 

5.​ The interpolated values are compared to the original values in a statistical analysis.  

This analysis was conducted independently for electric meters and gas meters. Electric 
samples were isolated for weekends and weekdays. For both electric and gas, samples were 
chosen corresponding to scenarios of 1%, 10%, and 30% missing data. For each sample, the 
interpolation algorithm was run with moving average windows of 2, 4, 6, 8, 12, 18, 32, 62, 
and 122 points, with an equal number of points preceding the missing value and following 
the missing value.  

For example, with a moving average window of 8 points, a missing electric value that occurs 
on a weekday at 3 pm will use the 4 closest non-null preceding weekday 3 pm points and the 
4 closest non-null following weekday 3 pm points to construct the interpolated value.  

The figure below shows fractional error for interpolated counterfactual (red squares), 
observed (green circles), and savings (blue hearts) as a function of moving average window 
(x-axis) for the electric weekday sample. The gray diamonds show the standard deviation 
(kWh) of the savings error. At 8,723 points this sample represents 1% of the available 
dataset. 

From moving average windows sizes of 2 - 18, the counterfactual and observed fractional 
error hover between 0.005 and 0.011, with the fractional savings error very close to 0 
(-0.003 - 0.002). Fractional savings error is calculated as sum(savings residual)/sum(original 
corrected counterfactual). With larger windows (32 - 122), a diversion is observed between 
counterfactual and observed error, leading to higher absolute error of the savings values.  

9 The term “corrected” indicates values have been calculated using a comparison group. 
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The next figure shows results for the electric weekend sample. This sample also represents 
1% (3,489 points) of the available dataset. The lowest residual of the savings values is 
observed with moving average window sizes of 8 and 12 points. Again, with window sizes of 
18 and under, fractional errors are all 0.012 or less. 

 

The next figure gives results for the gas sample. This sample also represents 1% (818 points) 
of the available dataset. 

Extremely low fractional error in the savings values is observed for all moving average 
window sizes except for the largest window of 122 points.  
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Analogous figures are given in the appendix for sample sizes that correspond to 10% and 
30% of missing values. In these cases generally good performance is also observed among 
the smaller window sizes. 

The table below summarizes results by moving average window size. Values in this table are 
computed from averages of the electric and gas 1% and 10% samples. (The 30% sample is 
extreme and was analyzed mainly to understand the limits of the algorithm in rare cases 
where a great deal of data is missing but a meter is still taken as qualified.)  
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In both the electric and gas samples the mean of the absolute savings error is lowest at a 
moving average window size of 8 points. The table also shows that absolute values of 
median savings error tend to be lower for smaller window sizes. This behavior may reflect the 
influence of data points far from the mean, which are more likely to influence the moving 
average as the window size grows. This is consistent with the observation that as window 
size grows, a higher degree of skew is observed in the distributions of observed residuals (see 
figures below). As long as mean error values are stable and near zero, the algorithm can be 
considered successful. 

The following three figures show the distribution of counterfactual, observed, and savings 
residuals that result from applying the interpolation method in the 1% electricity weekday 
sample. These distributions are highly symmetric and centered around zero. 
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The figure below gives the distribution of gas savings residuals for the analogous gas sample. 
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When the window size is increased, a higher degree of skew is observed in the negative tail 
of the observed residuals. However, the mean remains near zero as the median value creeps 
into positive territory. An example of this is provided in the next two figures (observed and 
counterfactual error distributions) for the 1% electric weekday sample with a moving average 
window of 62. 
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Because the counterfactual results from a model (and therefore will not be prone to 
high-consumption outliers), the distribution remains quite symmetric even at this large 
moving average window size. 

 

In summary, a window size of 8 performs well for both electric and gas and is recommended 
for adoption in the interpolation algorithm. This value should be revisited, however, if 
monthly data ceases to be extrapolated across the days of the month. 

E.​ Additional Figures 
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